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A method is developed whereby lattice Green functions and Watson-like integrals 
can be readily computed by splitting them into a sum of a power series and an asymptotic 
series. The method is illustrated by the evaluation of an antiferromagnetic integral and 
a basic thermodynamic Watson’s integral and followed by a treatment of the generalized 
problem on all the cubic lattices. 

I. INTRODUCTION 

Recently there has been considerable interest in the evaluation of lattice Green 
functions (LGF) [I, 21 and thermodynamic extensions of Watson sums (TWS) 
[3]; the basic Watson sum or integral being a special case of LGF. The essential 
ingredient of all these three-dimensional integrals is the appearance of the nearest- 
neighbor dispersion function in a manner which gives a singularity in the integrand. 
Through investigations to evaluate related integrals arising from the two-sublattice 
character of an antiferromagnet we have developed a technique which can also be 
used for the evaluation of LGF and TWS for all the cubic lattices to any desired 
precision. 

These three-dimensional integrals arise as Brillouin zone sums of large lattices 
that have an essentially continuous distribution of wavevectors, while the Brillouin 
zone sums are themselves a direct consequence of the lattice periodicity [4]. The 
dispersion function considered in connection with LGF and TWS is usually 
restricted to problems that have only nearest-neighbor coupling, though most of 
the models involved in physical theories become more realistic for longer-ranged 
interactions. 

These integrals may be written in the following manner: Starting with the 
general LGF, 
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while the general TWS incorporates the Planck or Bose-Einstein distribution in 
the following manner: 

1 
Ti(ci, rj, l, m, n) = __ 

UC n dx dy dz cos lx cos my cos nz 
(2793 . I -n exp{+ - Y& Y, 41) - 1 ’ (2) 

In (1) and (2) we have already converted the Brillouin zone sum to an integral, 
simplified the wavevector variables to x, y, and z, and arranged that they range 
over a cubic domain [5, 31. Other ingredients of (1) and (2) are i, which distin- 
guishes the lattices, i = 1 for SC, i = 2 for bee, i = 3 for fee; 01 physically repre- 
sents an inverse temperature giving 0 ( a: < 03, while 7 # 1 represents an 
external magnetic field (in the magnetic context) giving the range of interest as 
1 < 7 < co. 1, m, n are integers which could be zero. The quantity 7 - yi is 
known as the dispersion function, while yi is a structure factor: 

i=l, SC, y1 = $(cos x + cos J’ + cos z). (3) 

i = 2, bee, y1 = cos x cos y cos z, (4) 

i = 3, fee, y.J = ~&(COS x cos y + cos y cos z + cos x cos z). (5) 

The singularities of the integrands of (1) and (2) occur for 77 = 1 at the origin 
(x, y, z = 0) when the dispersion function vanishes. Furthermore, as a--f 0, 
T, + WJol, giving a connection between TWS and LGF. 

Arising from the two-sublattice character of antiferromagnets we find the fol- 
lowing integrals: 

1 
US, 6 m, 4 = m . m -n dxdydz cos Ix cos my cos nz 

(6) I - ~7i [S2 - Yf(X, y, z)2]1'2 ' 

where 6 > 1 represents ferrimagnetism, and physically we cannot generate the 
case for i = 3, i = 1 being known as the NaCl type, i = 2 the CsCl type. There 
is also some interest in the thermodynamic extension of (6). 

Our method is closely related to a technique used in the evaluation of LGF by 
Maradudin et al. [6, 71 where an integral with limits from 0 to 00 is split to permit 
the use of both power and asymptotic series. In the present paper we encounter 
the sum of an infinite number of terms which can be split in an analogous fashion. 

Section II shows how a Fourier transform generates an infinite sum for 
V,(l) 0, 0, 0) and in Section III a similar result is found for T,(ol, 1, 0, 0, 0), 
albeit in a different way, and gives a method of evaluating that specific TWS in a 
region that was previously difficult. Finally, in Section IV, by developing general 
asymptotic formulas, we consider the problem of calculating the general TWS 
for all the cubic lattices. In doing so we also find a procedure for the general LGF 
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(involving the split integral version) which was previously given only for the 
restricted cases of WI(v, 0, 0, 0) [6] and Wz(r), 0, 0, 0) [S&l 

II. ANTIFERROMAGNETIC INTEGRALS, 8 

The quantity arising in antiferromagnetism is actually V,(l, 0, 0, 0) - 1, known 
as c’ [9] and for the CsCl type (i = 2) was definitively evaluated by Davis [lo]. 
Davis’ method was to expand the square root and integrate term by term. For the 
NaCl type (i = I), a larger number of terms arise in the expansion, the convergence 
being very s10w.~ However, another type of expansion can be used profitably. 

Writing V = I/,(1, 0, 0, 0), we have explicitly 

1 
u-1 

.Ti 

v = (2n)3 I 
dx dy dz 

.-~ [I - (1/9)(cos .Y -c cos .v + cos z)z]1’2 

Making use of the Fourier expansion [ll], 

1 
(I - ty 

= 5 -t 7r f J&mr) cos(mrt), ; t i < 1. 
?I+1 

(7) 

(8) 

where J,,(m-rr) is a Bessel function of the first kind, one finds 

(cos x + cos y + cos I)] dx ((1, h. (9) 

Expanding the cosine and using the following two identities: 

& ,‘; dx cos(t cos x) = Jo(t ), 
- 77 

-- (2:) 11 d-x sin(t cos X) = 0. 
71 

(11) 

1 Using a different procedure, Mannari and Kawabata [Extended Watson Integrals and their 
Derivatives, Research Notes of Dept. of Physics, Okayama University, No. 15 (1964)] evaluated 
W<(T, O,O, 0) for all the cubic lattices. 

2 This expansion can be rewritten in terms of random walk probabilities 

Although this series is slowly convergent it can be accurately evaluated using the Euler-Maclaurin 
summation formula. [For details, see C. DOMB, Proc. Cmnb. Phil. Sm. 50 (1954).] 
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we have 

This is evaluated as 

N 

V = 5 + n 1 J0(fi17r) Jo3(mrr/3) + asymptotic expansion. 
VZ=l 

(13) 

The asymptotic expansion is obtained from the expression [I l] 

J,(x) R3 (2/7rx)l’2 jcos(x - n/4)[1 - $-)2+ -1 

+ sin(x - -/4)[+&- - 
123252 ___ + ..*][. 

3! (8~)~ (14) 

We found that ten terms in the expansion of (13) were more than sufficient for 
seven-figure accuracy. Using N = 4 gives c’ = 0.1567154, the same value being 
obtained with N = 3, 5. The best value previously was 0.156, given by Kubo [9] 
in 1952. 

III. THERMODYNAMIC INTEGRAL T1(~, 1, 0, 0,O) 

Letting T(a) = T1(~, I, 0, 0, 0), we have explicitly that 

1 n 
T(cu) = (27r)3 SSI 

dx dy dz 
(15) --?i exp 0l[l - (1/3)(cos x + cos y + cos z)] - 1 ’ 

For small 01 (high temperature) we can expand the integrand in a power series 
about cy. = 0 and integrate term by term with the result 

where W is Watson’s integral [5] (== 1.516386...) and 

k 

k=. (2m - 2d- l)! 62k t;O [(1)!]4j;? /)!I2 ’ (17) 

B,,, being Bernoulli’s numbers. The first few terms of this series have been given 
before [12]. 
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For large 01 it is possibIe to find an asymptotic low temperature expansion 1131. 
A brief review is appropriate because our method involves a modification of this 
expansion. Rewriting (15) as a geometrical series and interchanging the order of 
summation and integration, we get 

T((y) = (2$ l,L=l 2 s.I’I”_, &I dy dz exp[--mn(l - (1/3)(cos s + cos j’ + cos z)j], 

(18) 

This can be expressed as a product of modified Bessel functions by using the 
integral representation ill ] 

1 = 
I,(u) = (2,, 

s 
--n cos kx e” co9 x dx (19) 

to obtain” 

Using the following asymptotic form [I I] of I,(U), 

(for II large), (20) may be expressed as 

cm 

is the Riemann zeta function. This is an asymptotic series so that the results are 
useful only for large values of c%. 

s This expression appears to have been first developed by Tanaka and Glass (unpublished 
work) cited in S. H. CHARAP AND E. L. ROYD, Phys. Rer. Al33 (19&i), 811. 
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In order to get definitive results for smaller 01, consider the following splitting 
procedure for (20): 

N-l 

T(a) = C e-““Io3(mcx/3) 
m=l 

+ (3/2+3’2 [5,(3/2) + (9184 5,(5/2) + -d, 0 < a < co, (25) 

where L,&) is a truncated Riemann zeta function 

tN(P) = f l/m”. (26) 
171=N 

Due to the fact that 

Lx!(P) m t;(P)lN”, (27) 

for any cx we can always find N large enough so that (25) converges in the same 
manner as (23) does when 01 is large. By trial and error we find that for six place 
accuracy N must satisfy the condition 

N 2 24101. (28) 

With this method one can calculate T(cY) for arbitrary 01, though for 01 < 1 it 
will be more efficient to use the high temperature series (16). For a from 1 to 20 

TABLE I 

Comparison of three methods for calculating T(U). Ten terms of high temperature series and ten 
terms of low temperature expansion were used. 

a 

0.05 
0.1 
0.5 
1.0 
3.0 
5.0 

10.0 
15.0 
20.0 
25.0 
30.0 
60.0 

Low temp. 
expansion 

(23) 

9.94334 x 10-a 
7.06705 x 1O-3 
5.35277 x 1O-3 
1.87287 x 1O-3 

Extended low 
temp. expansion 

(25) 
_- 

2.98319 x 10’ 
1.46722 x 10’ 
2.57418 
1.09773 
2.15227 x 10-l 
9.13117 x 10-2 
2.92608 x lo-” 
1.54934 x 10-Z 
9.94337 x 10-S 
7.06705 x 1O-3 
5.35277 x 1O-3 
1.87287 x 1O-3 

High temp. 
expansion 

(16) 

2.98319 x lo1 
1.46722 x lo1 
2.57418 
1.09773 
2.14803 x 10-l 
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this method is particularly useful because it fills the gap left by the simple high 
and low temperature series (see Table I). In this connection we might note that 
Flax and Raich [3] have proposed a different method that appears to be weak for 
large a: [14] or low temperatures; our present method may be regarded as an 
extended low temperature series while Flax and Raich [3] have basically extended 
the high temperature series. 

IV. GENERAL METHODFOR TWS AND LGF FORTHETHREECUBICLATTICES 

The evaluation of (1) and (2) proceeds in a similar way as for V and T(a). First 
consider the integral 

Qdn, rl, 4 m, n) 

1 
sis 

r =--- 
(2?7)3 - -= 

cos Ix cos my cos nz exp[--[q - yi(x, y, z)]] n’x dy dz. (29) 

This integral has an asymptotic (large a) expansion: 

e-dn-l' if (Z.m.n) 

Q~(QG rl, L m, n> m o~3/2 C 5, 
k=O 

(30) 

where in view of the asymptotic nature of (30) K is chosen according to the preci- 
sion required [15] (for six-figure accuracy we found 10 usually appropriate), and 
has a small iy expansion. 

where a&m*n) and b&m*n) are independent of 01 and 7. The coefficients aI,“,,‘irnBn) can 
all be obtained from the following identities: 

K CJk 
Z(t) m et C ~ z=. tZ+l/2 ’ [111? 

l i!e 
2 = r(n) s 

m tn-led dt 2 0 

581/11/3-z 

(32) 

(33) 

y < x. (34) 
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Making use of (19) and (32) yields for S.C. 

Ql(a, 7, I, m, n) 63 e-a(ri-l) 2 CizCjmC,;1(3/a)i+j+k+3/2. 

Successive applications 

Qda, 7, 1, m, 11) 
K 

ijk=O 

of (19) and (32))(34) yield for bcc4 and fee 

,& e-“‘n-I’ c c~~Cj~Cl: 
ijkrs=O 

x w + i + l/2) I% +--j f l/2) w + s + l/2) qi + j + r + s + 1) 
r! S! JYi + l/2) r(.j -t- l/2) r(k + l/2) T(i +,j + r + 1) 

x r(k + s + l/2) r(j $ r f s - p f l/2) I+ f i fp i-- l/2) 
2T’Sp! (s - p)! r(i f l/2) r(,j + l/2) r(k + l/2) 

x (3/2a)i+j+k+r+s+3/2 (35c) 

for 01 large. 
The coefficients b$;tm*n) are obtained in a straightforward manner from (29) 

by expanding the exponential in a power series followed by term-by-term integra- 
tion. Having calculated the coefficients Q&~‘~) and bg>m9nj for a specific integral , 
it is straightforward to use them to calculate this integral for all CY and 7 using the 
splitting technique of Sections II and 111. 

In order to evaluate Tz(ti, 7, 1, m, n) one makes use of the identity 

& = zl e-j” (36) 

to express (2) as 

T’(a, 7,4 m 4 = f Qkb, 7% L w n). (37) 
,=l 

p Joyce [8] has developed recurrence relationships for the CZ)C~$-‘~~) which are much more econom- 
ical to use than (35b); however, for many problems the general expressions we use (35a-c) are 
quite adequate. 
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Splitting this sum in a similar manner to (20) and using (30) and (31), (37) becomes 

N-l 

T%(cr, 7j, I, m, n) = 1 e-j"" 2 ( ~cx)~ bjcl;lnsn) 
j=l k=O 

(38) 

where 

(39) 

and N is given by (18) (see Appendix). 
Wi(q, I, m, n) can be expressed in terms of Qi in the following manner (see (33)): 

Wdv, 1, m, n) = jm Qi(t, 7, 1, m, 4 dt. (40) 
0 

Splitting the domain of integration by introducing a parameter s (analogous to 
N in (38)) and using (30) and (31) we obtain 

~~(7, 1, m, n) = f b~z,;m,‘L) Is e+tkdt 
k=O 0 

(41) 

In (38) and (41) the infinite sum in the first term has good convergence and corre- 
sponds to the power series expansion which would be used to evaluate the Bessel 
functions in the first terms of (13) and (25). 

CONCLUSION 

We have developed procedures for the precision evaluation of generalized TWS 
and generalized LGF for all the cubic lattices. Many applications to physical 
problems are now possible. Prior to this work there has been very little discussion 
of TWS, attention having been concentrated on LGF. Moreover, the concentra- 
tion there has been on the SC lattice for restricted values of I, m, n. In going beyond 
the integrals discussed in this work one would probably be involved in more 
complicated dispersion functions such as those resulting from longer-ranged 
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interactions and then the expansions may become too tedious. For those cases, 
results to an accuracy better than 1 x, may be achieved readily with a more direct 
numerical integration scheme such as that proposed by Loly and Huett [16]. 

APPENDIX 

To use the method described in the preceding sections it is important to be 
able to calculate truncated Riemann zeta functions accurately. This may be 
achieved by the following rearrangements which overcome the slow convergence 
of (39) for small X. 

e-(2Nm+z-1)z 
(2Nm + I - 1)" 

] 

We have finally a rapidly converging series expansion in terms of the usual Riemann 
zeta functions. 
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